علم الرياضيات يضم مزيج من النظريات والمبرهنات التي بنيت عليها العديد من القواعد والاستنتاجات، لكن اليوم سنلقي عليها نظرة من قرب لكي نعوم في بحر المعلومات التي تحتويها ومن بين تلك النظريات تعريف نظرية فيثاغورس، وكان من بيننا من يلقى صعوبة في فهمها والآخر من محبي وعشاق الرياضة كات مستمتعا لشرحها.
ما هو تعريف نظرية فيثاغورس ؟
هل سألت نفسك ذات يوم سبب تسمية تلك النظرية بهذا الاسم. او ماهو تعريف دعنا نبدأ بالتعريف ومن ثم ندخل في كافة أقسامها استعدوا لرحلة والمغامرة في عالم الرياضيات.
هي تلك النظرية القديمة التي قدمت على يد عالم الرياضيات اليوناني الأصل فيثاغورس، وقد ساهمت في بناء علم الرياضيات، كما أنه أسست مدرسة قائمة على نفس الاسم للتعمق أكثر في علم الرياضيات، نظرية تتبع المثلث قائم الزاوية والى توجد زاوية به 90 درجة والوتر المقابل لها طوله يساوي مربع الضلعي الأخرى بنفس المثلث.
استخدامات نظرية فيثاغورس
استخدمت في العديد من المجالات التى تقتحم الحياة ولا يمكن الاستغناء عنها ومن بين تلك المجالات مايلي:
مجال البناء والإنشاء والتعمير:
- حيث بناء قطعة ارضة مستطيله او مربعه الشكل لابد من الاستناد على رسم مثلث قائم الزاوية.
- ومن ثم إنشاء الزاوية القائمة وبدء تحديد الطول والعرض لتحديد باقي الزوايا بشكل أكثر دقة.
مجال الملاحة:
- حيث انه عند الابحار او الطيران في جو مليئ بالغيوم والعواصف يمكن أن يتعرض القائد لضياع المسار.
- لذا ساعدت النظرية في القدرة على قياس المسافات وتحديثها بشكل صحيح.
- إضافة إلى أنها ساعدت في وضع العديد من الخرائط.
مجالات الهندسة والرياضة والصناعة:
- حيث تميزت النظرية في قيام العديد من العلوم كان من بينها التقدم في علوم دراسة الأرض.
- هندسة الطيران وايضا يقوم النجار والمهندس والميكانيكى في استخدامها والاعتماد عليها في تحديد العديد من القياسات.
قانون نظرية فيثاغورس
نصف النظرية يقوم ان مجموع مربع طول الضلعين للزاوية القائمة، وتلك الضلعين يعتبر الاقصر طولا من طول الوتر، حيث ان مجموع مربعه يساوي مربع الوتر فقط بشرط أن تكون الزاوية قائمة والوتر هو الضلع المقابل للزاوية، والنص بالرموز عبارة عن الاتى:
بافتراض أن المثلث أ ب ج قائم الزاوية والضلع أ والضلع ب من ضلعي الزاوية القائمة والأقل طولا في مجموع مربع الضلع أ +مربع الضلع ب يساوي مربع الضلع ج، وقد تم إثبات أن معكوس تلك النظرية ايضا صحيح حيث اذا توفر لدينا مربع الوتر يمكن إيجاد بطول ضلعي الزاوية القائمة إلى مربع الضلع ج يساوي مربع الضلع أ + مربع الضلع ب.
إثبات نظرية فيثاغورس
لابد من توافر براهين لإثبات نظرية فيثاغورس ، إذ قدم بعض العلماء براهين متعددة للإثبات ولكن أكثرهم هو العالم اليشا سكوت لوميس والذى قام بتقديم 370 برهان لحل نظرية فيثاغورس.
هذا وقد تم تقسيم 370 برهان إلى 4 أقسام وهى كالاتى:
- الجبر وهو يتعلق بجوانب المثلث قائم الزاوية.
- الهندسة ويعتمد فيها على المساحات.
- الحركية والديناميكية.
- المتجهات.
ومن بين تلك البراهين يختص بتقديم الإثبات آلاتى:
نفترض ان هناك اربع نقاط د ، هـ ، و، ي كل نقطة منهما سوف نستخدمها لتقسيم الاضلع الى قسمين متساويين لكي نحصل على مثلي داخلى، وفي ذلك الوقت نعبر عن المساحه (أ +ب) اس 2 تساوي 2 أ ب.
وبعد اختصار كافة الحدود سوف نستنتج ان مربع أو + مربع ب يساوي مربع ج.
استخدامات نظرية فيثاغورس في حياتنا اليومية
يمكن تطبيق نظرية فيثاغورس في الحياة اليومية في أشياء عدة وسوف نذكر مثال :
هناك صورة يريد الطفل سامى أن يقوم بتعليقها على حائط المنزل. بارتفاع يصل 10 امتار عن الارض، لذا احضر سلم ولكن طوله 12 متر. ما هو البعد الذي لابد على سامى وضع السلم عليه لكي يستطيع أن يقف على السلم ويعقل الصورة بشكل آمن؟
لاحتساب ذلك نضرب مربع طول الحائط ويجمع على مربع طول السلم. سوف نحصل على مربع البعد المفترض ابتعاد المسلم عن الحائط وإسناده عليها من أجل الصعود عليه.
مجسم نظرية فيثاغورس
يوجد عدد من المجسمات عن نظرية فيثاغورس مثل الطرق ، ارتفاع بعض الجدران والرسم عليها، كما الاثاث المنزلي وطريقة وضعه ايضا تعتبر مجسمات تخلل النظرية .
ربط نظرية فيثاغورس بالواقع
يمكن استعمال النظرية بالواقع من خلال أشياء متعددة عند اخذ مقاس معين، أو قياس الطرق وتحديد اى منهم يصلك سريعا.